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Abstract—Name lookup based on the Longest Prefix Match
(LPM) is a basic function in many network applications. Caching
is usually used to speed up the lookups. However, caching prefixes
for LPM has a unique challenge: one needs to guarantee a
cached prefix is indeed the longest for correctness. To achieve
this, existing solutions have to cache either the entire prefix trie-
branch or only the leaf nodes, which undermines cache utilization
and thus reduce the hit ratio. In this paper, we propose Plus-
Bitmap Caching (PBC), which associates a bitmap to each cached
prefix to denote the existence or absence of any longer prefix in
the main table. This bitmap not only guarantees the correctness
of LPM lookup, but also minimizes the extra information stored
in cache. Meanwhile, cache consistency for prefix updates can be
efficiently maintained. Experimental results show that, compared
with previous work, PBC increases cache hit ratio by 16% over a
wide range of cache size, and exhibits a more steady performance
when more non-leaf prefixes are hit or a prefix is hit by more
different names. PBC is a general approach that can be applied
to other LPM-based applications

I. INTRODUCTION

Name lookup is a basic function for many network appli-

cations such as domain name resolution and content search.

There are two types of name lookup: the Exact Match (EM)

and the Longest Prefix Match (LPM). The former is widely

used in technical fields such as search engine, data center,

storage system, and web application. The latter is becoming

popular because of the rise of Named Data Networking

(NDN) [1]. NDN packets carry content names instead of IP

addresses. Routers forward NDN packets by name lookups

in a name prefix table. While address lookup in IP routers is

also based on LPM, name lookup in NDN is more challenging

because 1) IP addresses are short and fixed-length, but names

are hierarchical strings with unbounded and variable length;

and 2) the size of an IP prefix table is moderate (e.g., < 106),

but the number of prefixes in a name table can be very large

(e.g., > 108) [2]. The ever increasing traffic makes the line

speed forwarding in NDN routers harder and harder.

Therefore, LPM-based name lookup is an active research

topic. Hardware-based schemes with TCAM [3], [4] or GPU

[5], [6] support fast lookup with massive parallelism but

entail high cost and low update efficiency. Software-based

schemes, on the other hand, are more flexible, scalable, and

cost effective, but need careful algorithm designs, which draw

more attention on research. As the basic data structure for

name lookups, a name trie [7], [8] can support incremental

updates easily, but cannot achieve high lookup performance,

due to the memory accesses required for traversing the trie.

Some algorithms resort to hash table or Bloom Filter [9]–[13]

to improve the lookup performance, at the cost of scalability.

One major hurdle for fast software-based name lookup is

that the limited CPU cache or fast on-chip memory cannot

accommodate the entire lookup table data structure. Hence,

some name lookups may require multiple main memory (e.g.,

DRAM) accesses which limit the throughput. A basic remedy

is to only cache popular prefixes on chip. Since the content

requests in NDN generally follow a long tail distribution [14],

[15], the cache hit ratio is supposed to be high.

However, a simple cache will not work because a cached

prefix may not be the longest matching prefix for a name, so

a cache hit does not cancel the need for searching in the main

table. Several designs try to address this issue [16], usually

requiring a large amount of extra information to be stored in

cache, which lowers the efficiency of cache utilization, and in

turn affects the overall lookup performance.

In this paper, we propose Plus-Bitmap Caching (PBC) to

solve this problem. PBC associates a small bitmap with each

cached prefix to indicate the existence or absence of any more

specific prefix in the main table. With the help of the bitmaps,

unnecessary slow main memory accesses are avoided. The

use of bitmap is more space efficient than the other caching

schemes, so space can be saved to cache more prefixes.

Compared with the other caching schemes, PBC increases

the hit ratio by up to 16% and maintains a more stable

performance with different name tables and lookup request

patterns. In a single-thread software implementation, PBC can

increase the lookup throughput by 4.78 times and reduce the

delay by 80% on the basis of a trie-based main table. It can

support uninterrupted lookup with fast updates by parallel.

The rest of this paper is organized as follows. Section II

surveys the related work. Section III introduces the PBC

scheme. Section IV details the PBC-enabled system. Section V

presents the evaluation. Section VI concludes the work.

II. BACKGROUND AND RELATE WORK

A. Existing LPM Name Lookup schemes

Depending on the application scenario, a trie [7], [8], [17]

can be bitwise, character-based, or substring-based. The time

complexity of lookups and updates in a trie is determined by

its depth. Hash-based schemes [9], [10] need to allocate a hashISBN 978-3-903176-28-7© 2020 IFIP
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Fig. 1: Behavior of the name caching schemes. The cache size is 3 and the replacement policy is Least Recently Used (LRU)
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Fig. 2: A name table and the corresponding trie

table for each prefix length and search them sequentially. The

time complexity of lookups is linear with the name lengths,

denoted by l. A binary search on the hash tables [11], [12]

reduces the lookup complexity to O(lg(l)) by trading off

the update complexity. The latest work, BFAST [13], applies

Counting Bloom Filter to accelerate name lookup in some

cases. However, the scalability of BFAST is a concern.

B. Name Caching Schemes

We now review the LPM schemes using a cache as an

accelerator. Liu proposed several cache designs for binary IP

trie [18], which employ the prefix leaf-pushing technique for

correctness. Wan et al proposed a cache design that avoids the

indiscriminate leaf pushing by generating virtual leaf prefixes

on demand [19]. However, the work does not pay enough

attention on efficient cache-consistency maintenance, which

can influence the lookup performance significantly. Besides,

Rottenstreich et al use lossy compression to create a LPM

cache with much less memory than the theoretical size limits.

Inspired by the caching schemes for IP prefixes, some

caching schemes for name lookup are discussed in [16]. We

use the name table and the corresponding trie shown in Fig. 2

to illustrate the behaviors of different name caching schemes

under the lookup request shown in Fig. 1. Each branch in

the trie is a name segment. A name segment is a sub-string

between two adjacent slashes in a name. We assume the cache

has only three entries. We adopt the terms used in [18]: If a

longer matching prefix exists, then relatively, the shorter one

is a “sub-prefix” and the longer one is a “super-prefix”.
1) Atomic Caching: In this scheme, a hit prefix must be

accompanied by all its super-prefixes in the cache; To evict

a prefix, all its sub-prefixes in the cache must be evicted

as well. Obviously, the cache utilization rate is low and

cache replacement is complicated. In Fig. 1, the first lookup

request /com/google/index/1 hits the prefix /com/google/*, so

it and its two super-prefixes are inserted to the cache. When

admitting the prefix /com/amazon/* that the third lookup

request /com/amazon/index hits, the cache must evict the tail

entry of [/com/google/map/*, R5] as well as the entry of

its super-prefix /com/google/*. Cache-consistency is easy to

maintain since the scheme only caches original prefixes.
2) On-the-fly Caching: This scheme [16] is essentially

an extension of the scheme in [19]. If a lookup request

matches an intermediate prefix node, a longer virtual pre-

fix is generated and cached. For example, in Fig. 1, the

intermediate prefix node /com/google/* is matched for the

first lookup request /com/google/index/1, so the on-the-fly

cache generates and caches a virtual prefix in the entry

[/com/google/index/*, R1]. Virtual prefixes may introduce re-

dundancy, e.g., the cached virtual entries [/com/google/news/*,

R1] and [/com/google/index/*, R1] after the fourth lookup

request in Fig. 1. Moreover, cache-consistency is more dif-

ficult to maintain. For example, if an update modifies the rule

associated with a prefix, it needs to find all the related virtual

prefixes in the cache and update them.
3) Exact Caching: This scheme only caches the full name

and the rule derived from the longest matching prefix. For

example, the first lookup request in Fig. 1 generates a cache

entry [/com/google/index/1, R1]. Although simple, the cache

utilization is not efficient. The cache-consistency maintenance

is as complex as that for the on-the-fly cache.
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4) Leaf-only Caching: This scheme, as the name suggests,

only caches leaf prefixes. This can lead to a low cache hit ratio

if most lookup requests only match intermediate prefixes. As

shown in the example in Fig. 1, leaf-only cache fails to make

full use of cache space and has a low hit ratio. The cache-

consistency needs to take extra care when an update makes a

cached leaf prefix intermediate.

Tab. I summarizes the properties of the above caching

schemes and PBC.

III. PBC CONSTRUCTION AND ANALYSIS

A. PBC Overview

The above caching schemes either use the cache space

inefficiently or fail to cache the intermediate prefixes. Ideally,

a caching scheme should have the following two properties:

1) it can cache each prefix individually regardless of the prefix

type, and 2) if a cached prefix is indeed the longest matching

prefix of a name, it should be able to tell that and avoid the

unnecessary search in the main table. PBC strives to achieve

these goals. In PBC, each non-leaf trie node is associated

with a bitmap. All the immediate child nodes of a trie node

are summarized in its bitmap, A prefix node, if matched in

the main table according to LPM, will be cached along with

its bitmap. When a name lookup hits a prefix in the cache,

the attached bitmap is tested. If the corresponding bit is ‘1’,

a further search in the main table is needed. Otherwise, the

current prefix is final.

We use the name table and the corresponding trie in Fig. 2

to illustrate the PBC caching and lookup process. The trie

contains two types of nodes: prefix nodes and non-prefix

nodes. If the prefix node [/com/google/*, R1] is to be cached,

its two immediate child nodes, [/com/google/map/*, R5] and

[/com/google/mail/*, R4] (which happen to be prefix nodes

as well), need to be summarized in its bitmap. Assume the

bitmap is 4-bit long and the name segment map and mail are

encoded to bit 2 and 3, respectively (i.e., the bitmap is [0011]).

If the cache only contains an entry [/com/google/*, R1] and

its bitmap, the lookup request for the name /com/google/map
will hit it. After testing the bitmap and getting the positive

return value, a further search in the main table is followed,

as a longer matching prefix may exist. For another example,

if the lookup request for name /com/google/earth arrives, the

same bitmap is tested and it is likely to get a negative return

value, so R1 will be the final matching rule.

While PBC can provide information about the potential

matching super-prefixes, a false cache miss happens when

the matching prefix in the cache is not thought to be the

longest matching prefix but it actually is, resulting in an extra

search in the main table. False cache misses are caused by

two cases. First is from the bitmap construction. In the above

example, if the name segment earth is also encoded to bit

2 or 3 in the bitmap, false cache miss occurs. Therefore,

unless all the possible immediate name segments (not only

the immediate child nodes) for a prefix node are encoded to

unique indexes in the bitmap, this kind of false cache miss

cannot be avoided. However, it is impractical as the name set

in NDN cannot be known entirely in advance. Even if it is

known, the collision-free encoding costs large memory or long

time on bitmap testing, such as the Perfect Hash. For PBC,

we use general hash functions to encode each immediate child

node to construct a bitmap, which is essentially a single-hash

Bloom filter [20], so the false positive of the bitmap causes

false cache misses.

Another more subtle case can also cause false cache misses.

The bitmap only summarizes the immediate child nodes and

these nodes are not necessarily prefix nodes. A name may

match one of these nodes but fail to match any longer prefix

node. In this case, the bitmap test still returns a positive

answer, leading to a false cache miss. For example, in Fig. 2,

assume the root prefix stores the rule R0 and is cached. The

lookup request for the name /com/youtube will lead the search

to the left sub-trie. However, the search cannot go any further

and a false cache miss occurs.

Although false cache misses do not cause errors for name

lookup, it reduces the cache hit ratio. To keep a low False

Cache Miss Ratio (FCMR), The key measure we take is to

lower the False Positive Ratio (FPR) of the bitmap, which

can be directly translated into a lower FCMR. Constructing

fixed-size bitmaps to reduce the FPR is not reasonable, as the

trie is usually highly unbalanced in reality, i.e., most parts are

quite sparse, but some nodes, e.g., the root, have thousands of

immediate child nodes. The analysis on the real name table

from DMOZ [21] shows that about 95% prefixes have no

more than 8 immediate child nodes and 99.9% prefixes have

no more than 512. Therefore, we use adaptive bitmaps to keep

a low FPR.

Assume the bitmap size is m and the number of immediate

child nodes is n. The proportion of bit ‘1’ in the bitmap is at

most n/m, so the FPR for a non-member name segment is

at most n/m. This implies that, to maintain the same FPR θ,

we should make the bitmap size proportional to the number of

immediate child nodes. On the other hand, for implementation

convenience and lookup performance, the size of the bitmap

is better to be the power of 2.

Based on these considerations, we take the maximum FPR

to θ = 12.5% as an example. We allocate 64-bit bitmaps to

nodes with up to 8 immediate child nodes. We double the

bitmap size for nodes with up to two times more immediate

child nodes. The bitmap size continues to increase for nodes

with more immediate child nodes, but is capped at 4096 bits.

According to the statistic result that 99.9% prefixes have no

more than 512 immediate child nodes, setting the maximum

bitmap size to 4096 is reasonable.

We can analyze the bitmap as a single-hash Bloom filter

against an optimal k-hash Standard Bloom Filter (SBF). The

false positive for SBF is,[
1−

(
1− 1

m′

)nk
]k

≈
(
1− e

− nk

m
′
)k

, (1)

where m
′

denotes the size of the SBF and n denotes the size

of the member set. If the optimal value k = m
′
ln 2
n is taken,
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TABLE I: Comparison of the name caching schemes

Scheme Objects cached
when cache miss

Extra operation for
cache replacement

Cache-consistency
complexity Variant of Eq. 3 Key factors for

cache hit ratio

Atomic The hit prefix and
all its super-prefixes

Admit super-prefixes
Evict sub-prefixes

Up to 1 LPM cache lookup C =
∑

i∈P
|Di| · (1 − e−λiT )e

∑

j∈Ui

−λjT

Leaf prefix hit ratio

Exact The exact lookup
name

None
Traverse the cache or search
the recorded virtual prefixes

C = |N | − ∑

n∈N
e−λnT Replicated request

name ratio

On-the-fly The hit leaf prefix
or virtual prefix

None
Traverse the cache or search
the recorded virtual prefixes

C ≈ |L| + |NL| − ∑

i∈L
e−λiT − ∑

n∈NL
e−λnT Leaf and virtual

prefix hit ratio

Leaf-only The hit leaf prefix None Up to 1 LPM cache lookup C = |L| − ∑

i∈L
e−λiT Leaf prefix hit ratio

PBC The hit prefix and
its bitmap

None Up to 2 EM cache lookups C ≈ (|P| − ∑

i∈P
e−λiT ) FCMR

TABLE II: List of main notations

P set of prefixes
PL set of leaf prefixes
N set of exact names
NL set of exact names that match non-leaf prefixes
Ui set of sub-prefixes of prefix i
Di set of super-prefixes of prefix i
τi time interval of two consecutive requests of object i
T maximum sojourn time for object i
ip the parent object of object i
Ai(t) age of the last request for object i at time t
λi average request arrival rate for object i
C total cache size
Si cache size occupied by object i
Ii(t) indicator of whether object i is in the cache at time t
βi(t) occupancy probability for object i in the cache at time t
hi hit probability for an object i

the value of m
′

is − n ln θ
(ln 2)2 . Since θ ≈ n/m, the ratio of m

′

and m is,

m
′

m
≈ − θ ln θ

(ln 2)2
, (2)

When setting θ = 12.5%, the ratio is 0.54, which means the

size of the bitmap is about twice larger than the optimal SBF.

We consider this as a trade-off for using just a single hash

function, which is important for the cache performance.

B. PBC Behavior

We describe the behavior of PBC using the name lookup

requests shown in Fig. 1. For the first lookup request

/com/google/index/1, since the cache is still empty, the match-

ing prefix (along with its bitmap) is admitted to the cache

after the search in the main table. The second lookup request

/com/google/news results in a cache hit, assuming no false

positive happens when testing the bitmap. The third lookup

request /com/amazon/index misses the cache but matches a

leaf prefix in the main table, so PBC admits it with a leaf flag.

The fourth lookup request /com/google/index/1 also hits the

cached entry [/come/google/*, R1], assuming no false positive

happens when testing the bitmap.

C. Theoretical Cache Hit Ratio

Now we analyze the theoretical cache hit ratio of PBC. The

main notations are listed in Table II. We use the approximation

described in [22], [23] to analyze the cache hit ratios of the five

caching schemes, which is validated by both theories [24] and

experiments [22]. The approximation assumes the matching on

a certain prefix follows a Poisson process, in which the inter-

request time follows an independent and identical Exponential

distribution, and the occurrence probability of a certain prefix

follows a Zipf distribution, in which the probability of i-th
most popular prefix is proportional to 1/iα, where the system

parameter α is recommended to be between 0.8 to 1. Such a

configuration obeys the situation of Internet [14], [15].

The approximation works as follows. As in [25], we in-

troduce the indicator random variable Ii(t), which takes 1 if

object i is in cache, and 0 otherwise, to establish the equality

relationship between the cache size C and βi(t),

C =
∑

E[Ii(t)Si] =
∑

βi(t)Si. (3)

βi(t) is the probability that the age of the last request Ai(t)
does not exceed maximum sojourn time T , assuming T is

constant for any i. We have Eq. (4) for the Possion process,

βi(t) = P{Ai(t) ≤ T} = FAi
(T ) = 1− e−λiT . (4)

Combining Eq. (3) and (4), we can obtain T , and derive

the cache hit ratio h in Eq. (5),

h =
∑

pihi =
∑

piP{τi < T} = pi(1− e−λiT ). (5)

Due to limited space, we omit the detailed derivations of

the cache hit ratio for the five caching schemes but summarize

the final results and the key affecting factors in Table I.

For a given traffic model, fewer caching objects and smaller

cache occupation size lead to longer sojourn time and higher

cache hit ratio qualitatively. According to the analysis, PBC

has the best performance when FCMR is low enough. By

contrast, exact caching is overwhelmed by the large number

of names; the performance of atomic, on-the-fly, and leaf-

only caching schemes heavily depends on the traffic model.

In the extreme case that all of the lookup requests only

match the leaf prefixes, their variants of Eq. (3) degenerate

to C = (|P| − ∑
i∈P e−λiT ), meaning their cache hit ratios

are approximately equal to PBC’s, which is confirmed by an

experiment in Section V.

IV. SYSTEM DESIGN

We first describe the system framework of the PBC-enabled

name lookup engine. Then we describe a software-based

implementation and detail its lookup and update processes.
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com/google/*, [0011], R1

0 0 1 1
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...Main Table

a) Lookup 
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/com/google/map/1

c) Delete /com/google/mail/*

Return R2 Return R5

Insert
[/com/google/map/*,
leaf, R5]

Fig. 3: System framework and example of the three workflows:

a) The lookup for name /com/amazon/1 hits a leaf prefix in

cache, and returns the corresponding rule R2; b) The lookup

for name /com/google/map/1 misses the cache because it hits

a ‘1’ in the bitmap, continues to search in the main table, and

inserts a new cache entry [com/google/map/*, leaf, R5]; c)

An update deletes a prefix /com/google/mail/* from the main

table, which needs to search the cache and delete it if it exists.

A. Framework

Fig. 3 shows the system framework of the PBC-enabled

name lookup engine, which contains a PBC cache and a main

table. This general lookup framework applies to all caching

schemes discussed in Section II. The specific implementations

of the cache and the main table can be in software or hardware.

There are three types of workflows on the system frame-

work. First, the lookup results in a cache hit and returns the

cached rule without consulting the main table. Second, the

lookup results in a cache miss, either true or false, and goes to

search in the main table. In this case, if a better match is found

in the main table, it is also admitted to the cache. If the cache

is full, LRU is used for cache replacement. Third, the rule

update may need to update the cache (i.e., modify or delete

some entries) for cache consistency. In summary, the PBC

cache has one source of lookups for packet forwarding, and

two sources of updates for cache replacement and consistency

maintenance.

Most name lookup algorithms, either hardware-based or

software-based, usually encode the original human-readable

segments or names to fixed size strings for storage efficiency

and lookup performance. The conversion can be done at the

forwarding nodes such as CCNx [9] and NFD [10], or by the

senders such as hICN [26]. In the system implementation, the

encoded names are used, but we still explain the algorithm

with the human-readable names for convenience.

B. Software-based Implementation

The cache indeed stores some of the name prefixes, so it

can be implemented like a small main table. Although TCAM-

based implementations can realize constant prefix matching,

we focus on a software-based implementation as it is more

flexible and widely used in the current NDN deployment.

Since hash-based name lookup is faster than trie-based ones

in general, we use a hash-based PBC cache as our name

cache data structure, as shown in Fig. 4. The main table

data structure is a pbTrie which maintains a bitmap for each

intermediate node, as shown in Fig. 5.

0/
/

/
...

/com/amazon R2 0000 1

/com/google R1 0011

Bucket

Slot

LRU list head

0

LRU list tail...

fingerprint   rule     bitmap leafFlag   

nodePtr

Name fingerprint
/com/google

Fig. 4: Structure of the Hash-based PBC

google

0 1 0 1

amazon facebook

com

Branch counter:3      Rule: empty

Bitmap      

Lookup 
table

google

amazon

facebook

Fig. 5: Structure of the pbTrie node

Each name is encoded into two ordered lists. The first list is

called fpSeg, which contains the fingerprints of its name seg-

ments. A fingerprint is a fixed-size hash value.The second list

is called fpPrf , which contains the fingerprints of all the pre-

fixes of the name. For example, for the name com/google/map,

its fpSeg is [H1(“com”), H1(“google”), H1(“map”)],
and its fpPrf is [H2(“com”), H2(“com”, “google”),
H2(“com”, “google”, “map”)], in which H1 and H2 are two

hash functions. Assuming a small number of fingerprint colli-

sions are tolerable for our system, we let H2(S1, S2, ..., Sn) =
H1(S1) ⊕ H1(S2) ⊕ ... ⊕ H1(Sn) for simplicity, so fpPrf
can be derived from fpSeg. For systems that cannot tolerate

any collision, the hash-table structure in [27] can be used.

1) Hash-based PBC cache: It is essentially a linked hash

table as shown in Fig. 4. The key to the hash table is a prefix

fingerprint, and the value is a pointer to a cache entry. A

cache entry contains five fields including a prefix fingerprint

(for match verification), a rule, a bitmap, a leaf flag, and a

pointer to the corresponding node in the pbTrie.

All the cache entries are doubly linked so it is easy to

implement the LRU cache replacement policy. Each hit entry

is relinked to the head. A new cache entry is always inserted

to the head, and an old cache entry is removed from the tail

if necessary. The cache entries hashed to a same slot are also

doubly linked by a slot list.

To search a name in the cache, we linearly search the hash

table by using the fpPrf as key in descending prefix length

order. At each hashed slot, we linearly search the linked cache

entries by comparing the fingerprints. We repeat the above

steps until a matching prefix is found or all the prefix lengths

are checked. The pseudo code for the PBC-enabled name

lookup is shown in Algorithm 1. Once get a matching entry

at line 3, we will proceed to the next operations as follows. If

a leaf prefix is matched (i.e., the leaf flag is set) or the name’s

length equals to the prefix length, we can directly return the

result as the best match. Otherwise, for this found entry, we

need to check the bitmap to see if it is possible to have a

longer match in the main table (line 8 to 13). If the answer is
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Algorithm 1: PBC-enabled Name lookup

Input: structure for the lookup name n
Output: LPM rule r, pointer to a pbTrie node np, component

number that is matched l
1 for l ← n.length to 1 do
2 fe = HashTable.lookup(n.fpPrf [l]);
3 if fe then
4 if l == n.length || fe.leafF lag then

/* find a LPM or a leaf prefix */
5 LruList.reoder(fe);
6 return r ← fe.rule, np ← Null, l
7 else

/* To compare the bit value */
8 bitIdx = n.fpCmp[l + 1] % Bits(fe.bitmap);
9 if fe.bitmap[bitIdx] == 0 then

10 LruList.insertHead(fp);
11 return r ← fe.rule, np ← Null, l
12 else
13 return r ← False, np ← fe.nodeP tr, l

14 return r ← False, np ← Null, l ← 0

Algorithm 2: Prefix insertion for PBC

Input: cache entry of the insertion perfix e.
1 index ← e.fingprint % BUCKET LENGTH;
2 HashTable[index].insert(e);
3 LruList.insertHead(e);
4 if entryNum = CACHE SIZE then
5 LruList.deleteTail();
6 else
7 entryNum ← entryNum+ 1;

negative, the current matching prefix is returned as the best;

If the answer is positive, we need to follow the pointer in the

entry to continue the search in the pbTrie. The pointer allows

us to start the search from the current matching prefix, called

the mid-way search, which improves the lookup performance

on pbTrie. Besides, whenever a cache hit happens, the cache

entry for the matching prefix is relinked to the head of the

entry list and the head of the slot list.

A new prefix insertion happens only when the matching

prefix of a lookup name does not exist in the cache. To insert

a new cache entry, we first check if the cache is full. If so,

we evict a cache entry from the tail of the entry list. Then we

insert the new entry to the head of the entry list. At last, we

find the target hash table slot for this entry and link it to the

head of the slot list. The pseudo code for the prefix insertion

process is shown in Algorithm 2.

A name table update may involve modifying or deleting a

cache entry for a prefix. To modify a cache entry, we only

need to locate it in the cache by performing an exact match

lookup and rewrite some fields. To delete a cache entry for a

prefix, we first need to locate it in the cache. If it is found, we

simply remove it from the cache entry list and the slot list. The

pseudo code for the update process is shown in Algorithm 3.

2) pbTrie: The trie is built on name segments. To support

PBC, pbTrie associates a bitmap to each non-leaf node. As

Algorithm 3: Prefix Update for PBC

Input: cache entry of the updated prefix e, update type type
Output: Whether there is an influenced cache entry

1 fe = HashTable.lookup(e.fingprint);
2 if fe then
3 if type == MODIFICATION then
4 fe.rule ← e.rule ; // Insertion
5 fe.bitmap ← e.bitmap;
6 fe.leafF lag ← e.leafF lag;
7 else
8 HashTable.delete(fe) ; // Deletion
9 LruList.delete(fe);

10 entryNum ← entryNum− 1

11 return True;

12 return False;

shown in Fig. 5, each pbTrie node maintains a bitmap, a node

lookup table, and some other auxiliary data such as the branch

counter. The branch counter is used to determine the node type

and the bitmap size. The lookup table uses the accumulated

number of ‘1’s in the bitmap as index. All the branches sharing

the same index are linked to the corresponding table entry,

e.g., amazon and facebook in Fig. 5. Therefore, to follow

a branch, we need to first hash the segment fingerprint to

acquire its bit position in the bitmap; By counting the number

of ‘1’s in the bitmap before this bit position, we get the

node lookup table index; then we can follow the link list

to find the pointer to the next child node. In pbTrie, we

set the node lookup table’s slot number to be the same as

the upper limit of the number of ‘1’s for the current bitmap

size and FPR threshold configuration. Therefore, it avoids too

many empty slots, and keeps the link lists short. This data

structure effectively balances the storage size and the lookup

performance. Particularly, to accelerate counting the number

of ‘1’s, pbTrie splits a long bitmap to several 64-bit segments.

Each segment is associated with a before field to record the

total number of ‘1’ before this segment. In each segment,

we adopt the hardware instruction POPCNT [28] to count

the number of ‘1’s for any offset in a single CPU cycle. By

summing the two numbers, we can get the slot index quickly.

Searching in a pbTrie for LPM is straightforward. Now we

describe the pbTrie update process and explain how it can

affect the cache using examples shown in Fig. 6.

To insert a prefix to a pbTrie, we come across two cases:

1) The prefix matches an existing trie node. If the trie node

is also a prefix node, we need to modify it. We also need to

search the cache for the prefix and modify it if it is in cache.

Otherwise, if the trie node is not a prefix node, we just update

it but we do not need to search the cache for it (see case a in

Fig. 6). 2) The inserted prefix needs to create new trie nodes.

In this case, we do not need to check the cache for this prefix

since it is impossible to have been cached. However, if the

new prefix causes its nearest sub-prefix node to add a new

branch and change the bitmap, we need to check the cache

for that sub-prefix (see case b in Fig. 6).

To delete a prefix in a pbTrie, we come across two cases as
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b) insert [/com/google/news/sci/*, R1] a) insert  [/com/google/map/*, R1] 

m
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...

c) delete  [/com/google/*] d) delete /com/google/mail/*] 
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Fig. 6: pbTrie insertion and deletion examples: a) the inserted prefix matches a prefix node; b) the inserted prefix generates

new prefix nodes and changes the bitmap of its sub-prefix node; c) the deleted prefix matches a non-leaf node; d) the deleted

prefix deletes the leaf node and changes the bitmap of its sub-prefix node.

well: 1) The deleted prefix node is a non-leaf node. We simply

clean the rule in this node (see case c in Fig. 6). As the prefix

may be cached, we should delete it from the cache if so. 2)

The deleted prefix is a leaf node. In this case we need to delete

the leaf node first and then recursively delete the parent node

until the parent node is a prefix node or it has other child

nodes. This operation may also affect some prefix’s bitmap.

So we need to search the cache for both the original prefix

and the affected prefix, and then delete the original one and

update the affected one, if any exists (see case d in Fig. 6).

From the above discussion, we can see for any update on

pbTrie, the PBC cache needs to do prefix updates from zero

to two times to maintain the cache consistency.

V. PERFORMANCE EVALUATION

We conduct experiments on real and synthetic data sets to

get the cache hit ratio of different schemes, and the lookup

and update performance of systems applying these schemes.

A. Experiment Setup and Data Sets

1) Name Prefix tables: We generate a real name prefix table

from the Internet domain name in three steps. First, we obtain

3 million names from DMOZ [21]. Second, we transform them

into NDN-style names by reversing the segment order. Finally,

we assign a random rule for each name. In addition, we

synthesize a name table VT16 from [4], which contains 3.55

million prefixes with each having 3∼16 segments. Statisti-

cally, the average segment number is 2.25 for DMOZ prefixes,

and 9.50 for VT16 prefixes. The two tables are representative

and comprehensive for scheme evaluation and comparison.

2) Name Trace: A name lookup trace is a sequence of

names fed into the lookup engine. Each name in the trace is

composed of a name prefix from a prefix table and a suffix.

To generate a trace, we first randomly select 100K prefixes

from a prefix table. Then, we pick up a prefix and append

it with different suffixes to generate names according to the

Zipf distribution (α = 0.9). At last, we shuffle the names and

finally get a trace for tests. Since the performance of some

caching schemes relies on the prefix type, we ensure each

trace has a different ratio of intermediate prefix to leaf prefix.

Similarly, we also generate an update trace, and each prefix

in the trace is an insertion or a deletion.

3) Platform: We run the experiments on a workstation with

an Intel CPU Core i7-6700 (4x 3.4GHz cores) and 32GB

DDR4 (2.4GHz) memory. Each CPU core has an 8MB three-

level cache. The workstation OS is Ubuntu-16.04-LTS.

B. Cache Hit Ratio

On evaluation of the cache hit ratio, we compare PBC

against the other caching schemes: on-the fly, atomic, exact,

and leaf-only. We vary the cache size, intermediate prefix

ratio, and suffix set size individually to test the schemes on

the prefix tables VT16 and DMOZ. For PBC, we also evaluate

the influence of FPR on the cache and system performance.

1) Cache Size: We test how the caching schemes perform

under different cache sizes. The results are illustrated in Fig. 7.

For both prefix tables and all the cache sizes, PBC performs

the best. When the cache size is small, PBC’s advantage is

more noticeable. For example, on VT16, the cache hit ratio

of PBC is 16.8% and 6.8% higher than that of the second

best, atomic caching, when the cache size is 1K (account for

1% of active prefixes) and 10K (account for 10% of active

prefixes), respectively. When the cache size increases, every

scheme performs better. If we keep increasing the cache size,

at some point some other caching schemes will outperform

PBC due to the false cache misses of PBC. However, in reality,

cache is a costly resource and its size is always limited.

2) Intermediate Prefix Ratio: The atomic and on-the-fly

caching schemes are inefficient for caching intermediate pre-

fixes. The leaf-only caching scheme does not cache these

prefixes. So the intermediate prefix ratio in a trace may

significantly affect the cache performance. The results are

illustrated in Fig. 8. The PBC and exact caching schemes show

a flat cache hit ratio, which means they are insensitive to the

prefix type, because they both only cache one prefix per cache

replacement operation. By contrast, the atomic, on-the-fly and

leaf-only caching schemes see a decreasing trend on their

cache hit ratio as the intermediate prefix ratio increases. Note

that, except for the exact caching scheme, the other caching

schemes have the same hit ratio when all the hit prefixes are

leaves, which complies with our theoretical analysis.

3) Suffix Set Size: We test the impact of suffix set size

on the cache hit ratio and show the results in Fig. 9. PBC

remains stable and efficient. The atomic and leaf-only caching
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Fig. 7: Cache hit ratios with the increasing cache size. The

intermediate prefix ratio is 20% and the suffix set size is 100.
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Fig. 8: Cache hit ratios with the increasing intermediate prefix

ratio. The cache size is 10K and the suffix set size is 100.
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Fig. 9: Cache hit ratios with different suffix set sizes. The

intermediate prefix ratio is 20% and the cache size is 10K.
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Fig. 10: Speedup ratios for lookup with a single thread. The

intermediate prefix ratio is 20% and the suffix set size is 100.

TABLE III: FCMR and average bitmap length (in bits) on

VT16 and DMOZ with different θ. The cache size is 10K and

the intermediate prefix ratio is 0.3.

θ
Branch # of
the 1st range

FCMR AVG bitmap length
VT16 DMOZ VT16 DMOZ

12.5% 1-8 3.32% 2.70% 64.47 89.64
6.25% 1-4 2.60% 1.89% 65.72 109.81
3.13% 1-2 1.56% 1.30% 79.43 146.46
1.56% 1 0.67% 0.83% 75.67 208.87

schemes are also stable, because they only cache prefixes, but

their cache hit ratios are lower than PBC. The on-the-fly and

exact caching schemes are influenced by the suffix set size

significantly. The exact caching scheme is especially suffered,

because it only caches exact names including the suffix.

4) FPR: The cache hit ratio of PBC is related to the

FCMR. We set the threshold FPR θ for the adaptive bitmap to

influence the FCMR. We show that the FCMR and the average

bitmap length under different θ values in Table III. Even when

the threshold is high, the FCMR is still low, thanks to the

high leaf node hit ratio (70%). The average bitmap length is

small and increases slowly when θ decreases, reflecting the

efficiency of the adaptive bitmap.

C. Lookup Performance

1) Single Thread: We run the name lookup engine based

on different caching schemes on a single thread. The lookup

performance on different cache sizes is shown in Fig. 10.

The y-ordinate represents the speedup due to the use of a

caching scheme on top of a pure pbTrie. For very small cache

sizes, caching fails to show any benefit and the atomic caching

scheme has even negative impact, because the cache hit ratio

is low and most of cache lookups are in vein. When the cache
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Fig. 12: The single-thread

lookup and update perfor-

mance for PBC on VT16.

size is relatively large, all schemes perform better. PBC shows

the best performance, which can improve the speed by up

to 4.78 times on DMOZ and 2.28 times on VT16. Atomic

caching remains the worst and the system performs better

without it. Besides, the caching schemes have a better effect

on DMOZ as its pure lookup speed is slower. Due to space, we

omit the results for other intermediate prefix ratio and suffix

set size configurations. The results show similar trends as in

Fig. 8 and Fig. 9.

2) Distributed System: To highlight the PBC performance

in distributed system where the cache runs in edge nodes

and the pbTrie runs in a remote controller, we simulate a

simple scenario. We set one edge node to receive name lookup

requests, and the transmission delay between the edge node

and the controller is 5ms. The lookup requests obey a Poisson

distribution whose λ is 1K, i.e., the average request frequency

is 1K per second. We evaluate the system delay which is

defined as the time used to get a name lookup result from

either local cache or remote controller. As shown in Fig. 11,

PBC still performs the best due to its high cache hit ratio,

reducing up to 80% delays, and is closely followed by the

on-the-fly and atomic caching schemes.
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D. Update Performance

1) Cache Replacement Performance: The atomic caching

scheme needs considerable operations on cache replacement,

especially under a deep name prefix table, small-sized cache

and high intermediate prefix ratio. E.g., for VT16, the average

operations are 19.7 per lookup, if the cache size is 1K and the

intermediate prefix ratio is 0.5. The other schemes all admit a

new prefix/name when a cache miss occurs. If the cache is full,

a prefix/name eviction is also needed. Hence, their expected

cache replacement operations are approximately equal to 2(1−
h). PBC needs the fewest operations on cache replacement due

to its highest cache hit ratio.

2) Cache Consistence Performance: When a table update

arrives, the trie needs to be updated and the cache needs

to be checked for consistency. The trie update can be time-

consuming, so we examine its performance first. The update

performance of pbTrie is closely related to the table structure.

It has lower update performance on the flat table such as

DMOZ. For example, the prefix insertion speed is 288K/s

on VT16 but only 3 K/s on DMOZ. This is because the

complexity of bitmap reconstruction increases rapidly with

the number of branches. The prefix deletion is much faster

on VT16, up to 514 K/s, but only about 1 K/s on DMOZ as

many deletions involve nodes with large bitmaps.

3) Comprehensive Performance: An update can interrupt

the lookup processes. We examine the comprehensive system

performance of PBC on VT16 by mixing the lookups and

updates, which can reflect the true behavior when deploying it

in a distributed system. Fig. 12 shows the updates and lookups

are negatively correlated on a single thread. A larger cache size

boosts the system performance due to the large cache hit ratio.

In a distributed system, if we parallelize the cache lookup and

the main table update, the lookup interruption time can be

reduced. However, to ensure cache consistency, in this case we

need to prohibit the mid-way search on the pbTrie. To simulate

such a system, we assign the cache and the main table in two

threads with parallel lookups and updates. When a cache miss

or table update occurs, the two threads communicate with each

other. Different from the above setting on a single thread, we

control the ratio of lookups and updates. If the ratio is low,

i.e., the main table is busy with updates and has not enough

time for cache miss, the lookup delay will increase. If the

ratio is high, the main table may be idle on waiting for cache

misses. The results show that if there are 5 table lookups per

update on average, the system on VT16 can achieve up to

41 K/s update speed, which is high enough referred to the IP

prefix updates in CAIDA [29], with almost uninterrupted 2.3

M/s lookups.

VI. CONCLUSION

PBC deploys an adaptive bitmap for name cache to facilitate

efficient LPM. Theoretical analysis and experiments show

that PBC achieves the highest hit ratio among existing name

caching schemes. In the future, we plan to develop PBC to

other networks, especially the SDN-enabled IP networks.
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